terça-feira, 25 de novembro de 2008

Nutrição e Emagrecimento

PRODUÇÃO DE ENERGIA(como conseguimos a energia para exercitarmos)

O termo energia é simplesmente definido como a habilidade de fazer trabalho. Várias formas de trabalho físico e biológico requerem energia incluindo contrações dos músculos cardíacos e esqueléticos. Permitindo-nos movimentar, trabalhar e exercitar, além de permitir o crescimento de novos tecidos em crianças, recuperação de doenças em adultos, condução de impulsos elétricos que controlam o batimento cardíaco, liberar hormônios e contrair vasos sanguíneos. A energia para todas essas funções do corpo humano é adquirida através da energia solar. Essa energia precisa primeiramente ser transformada em energia química para depois ser utilizada pelo corpo humano. A transformação desta energia se inicia nas plantas verdes através da fotossíntese.

As plantas podem estocar e formar vários tipos de carboidratos, gorduras e proteínas. Os animais e seres humanos vão adquirir esta energia ingerindo os alimentos como "combustível" . Vegetarianos consomem esta energia em forma de alimentos naturais e plantas verdes e aqueles adéptos a carne adquirem uma porção dessa energia consumindo proteína, carboidrato e gordura estocados nas carnes dos animais. Essa energia consumida será revestida em trabalho biológico ou estocada nos tecidos adiposo, muscular , esquelético e fígado para ser utilizada posteriormente. De fato, os individuos usam ou estocam menos que a metade da energia que eles consomem do alimento. A energia que não foi utilizada ou perdida se dissipa em forma de calor.

Quando grandes quantidades de energia são liberadas durante o exercício, a energia utilizada para o calor é bastante para aumentar a temperatura corporal. A energia adquirida através dos alimentos, precisa ser transformada em um composto chamado trifosfato de adenosina (ATP) antes que possa ser aproveitada pelo organismo (WILLIAMS, 1995). O Corpo processa três tipos diferentes de sistema para a produção de energia.

Os sistemas se diferem consideravelmente em complexidade, regulação, capacidade, força e tipos de exercícios para cada um dos sistemas de energia predominantes. Cada um é utilizado de acordo com a intensidade e duração dos exercícios. Eles são classificados em: ATP- CP , Sistema Glicolítico (Lático) e o oxidativo (aeróbico). Segundo Verkhonsnanski, no livro Treinamento Desportivo, Cap. 3, página 41 (colaboração: Maurício Raddi): "(...) três mecanismos químicos (energéticos):- fosfagênico ou creatinofosfático- glicolítico ou lático- de oxidação ou de oxigênio"

O objetivo de cada sistema é liberar energia dos produtos químicos ou alimentos e transformá-las em ATP podendo assim ser utilizados nas contrações musculares e atividades físicas (AFAA, 1994).

ATP-CP

O sistema fosfagênio representa uma fonte imediata de energia para o músculo ativo. Atividades que exigem altos índices de energia durante breve período de tempo dependem basicamente, da geração de ATP a partir das reações enzimáticas do sistema. O ATP necessário à contração do músculo está disponível tão rapidamente, porque esse processo de geração de energia requer poucas reações químicas, não requer oxigênio e o ATP e o PC estão armazenados e disponíveis no músculo. Este é o processo menos complicado de gerar ATP. A fosfocreatina (PC) tem uma cadeia de fosfato de alta energia, como a do ATP, que também é chamada fosfagênio (daí o nome " sistema fosfagênio" ). O PC se decompõe na presença da enzima creatina fosfoquinase e a energia liberada é utilizada para formar o ATP, a partir do ADP .

PC >>>>> C + P + EnergiaP + Energia + ADP >>>>>> ATP

Esta reação enzimática “ligada bioquimicamente " continuará até que se esgotem os depósitos de fosfocreatina do músculo. O sistema ATP-CP fornece energia para as contrações, durante os primeiros segundos do exercício. (Manual do Profissional de Fitness Aquático, AEA, Shape, 2001).Segundo Verkhonsnanski, no livro Treinamento Desportivo, Cap. 3, página 42 (colaboração: Maurício Raddi): "(...) esse mecanismo não durará muito, isto é, cerca de 6-10 segundos, aproximadamente. Todos os desportos, segundo McARDLE e col.(1992), exigem a utilização dos fostatos de alta energia (ATP e CP), porém muitas atividades contam quase exclusivamente com esse meio para a trasferência de energia, ex: levantamento de peso, beisebol, voleibol, exigindo um esforço breve e máximo durante o desempenho.

GLICOLÍTICO

Esse sistema metabólico gera o ATP para necessidades energéticas intermediárias; ou seja, as que duram de 45 -90 segundos, tendo como exemplo atividades tipo: corridas de 400-800 m. , provas de natação de 100-200 m., também proporcionando energia para piques de alta intensidade no futebol, róquei no gelo, basquetebol, voleibol, tênis, badmington e outros esportes. O denominador comum dessas atividades é a sustentação de esforço de alta intensidade e não ultrapassam os dois minutos. A glicólise anaeróbica, assim como o sistema ATP-CP, não requer oxigênio e envolve a quebra incompleta do carboidrato em ácido lático. O corpo tranforma os carboidratos em açúcares simples, a "glicose", usada imediatamente ou depositada no fígado e no músculo, como glicogênio. A glicose anaeróbia refere-se à quebra do glicogênio na ausência do oxigênio. Esse processo é mais complicado quimicamente do que o sistema ATP-CP e requer uma série mais longa de reações químicas. O sistema ácido lático talvez seja bem mais lento do que o sistema fosfagênio, porém produz quantidades mais altas de ATP (3 contra 1 do sistema fosfagênio), com a formação do ácido lático, produto desse sistema, a produção pode nem chegar a 3. Quando o ácido lático chega ao músculo e ao sangue, provoca a fadiga ou, até, uma falência muscular. O sistema de ácido lático, ou glicose anaeróbia, não requer oxigênio; gera como subproduto o ácido lático, que causa fadiga muscular; usa somente carboidratos; e libera aproximadamente duas vezes mais ATP do que o sistema fosfagênico. (Manual do Profissional de Fitness Aquático, AEA, Shape, 2001). O sistema ácido lático também proporciona uma fonte rápida de energia, a glicose. Ele é a primeira fonte para sustentar exercícios de alta intensidade . O principal fator limitante na capacidade do sistema não é a depleção de energia mas o acúmulo de lactato no sangue. A maior capacidade de resistência ao ácido lático de um indivíduo é determinado pela habilidade de tolerar esse ácido. A principal fonte de energia desse sistema é o carboidrato (McARDLE et alii, 1992 ) .

AERÓBIO

Este sistema fornece uma quantidade substancial de ATP, utiliza o oxigênio para gerar o ATP e é ativado para produzir energia, durante períodos mais longos do exercício. Fornece energia para exercícios de intensidade baixa para moderada. Atividades como dormir, descançar, sentar,andar e outros. Quando a atividade vai se tornando um pouco mais intensa a produção de ATP fica por parte do sisrtema ácido lático e ATP-CP . Atividades mais intensas como caminhada, ciclismo,fazer compras e trabalho em escritório também são supridas em parte pelo sistema aeróbico, até que a intensidade atinja o nível moderado-alto (acima de 75%-85% da Frequência Cardíaca Máxima), depois é recrutado para suprir energia suplementar. Os melhores exemplos de exercícios que recrutam o sistema aeróbio são: aulas de aeróbica e hidroginástica de 40-60 min., corridas mais longas que 5000 m., natação (mais que 1500 m.), ciclismo (mais que 10 km.), caminhada e triathlon. Qualquer atividade sustentada continuamente em um mínimo de 5 min. pode ser considerada aeróbia. O ATP liberado da quebra da glicose e/ou dos ácidos graxos, em presença de O², custa centenas de reações químicas complexas, que envolvem centenas de enzimas. A quebra ocorre num compartimento especializado da célula muscular, a mitocôndria. As mitocôndrias são consideradas as "usinas energéticas" da célula e são capazes de fornecer grandes quantidades de ATP para alimentar as contrações musculares. O sistema aeróbio possui 3 fases. A quebra do glicogênio na presença do O², ou glicólise aneróbia, discutida acima, e a glicólise aeróbia é que o O² evita o acúmulo de ácido lático. O glicogênio e os ácidos graxos são duas principais fontes de combustível utlizadas no sistema metabólico aeróbio. Ocasionalmente a proteína pode ser também usada como fonte de combustível metabólico, mas ocorre quando o corpo está fisiologicamente desgastado por excessos, por dietas ou por níveis extremamente baixos de gordura e glicogênio. Em suma, o O² ou sistema metabólico aeróbio requer grande quantidade de O² para aconverter o glicogênio em 39 moléculas de ATP e os ácidos graxos, em 130 moléculas de ATP. O ácido graxo ou glicogênio são quebrados e preparados par ao ciclo de krebs e o transporte de elétrons e, como resultado do proceso, temos CO², H²O e energia. O CO² evapora; a água é eliminada através da evaporação e da radiação; e a energia é usada na segunda parte da reação ligada, para sintetizar o ATP. (Manual do Profissional de Fitness Aquático, AEA, Shape,
2001).

LIBERAÇÃO DE ENERGIA PELOS ALIMENTOS

Carboidrato : Sua função primária é fornecer energia para o trabalho celular , segundo McARDLE et alii (1983) . Ele é o único nutriente cuja energia armazenada pode ser usada para gerar ATP anaerobicamente,ou melhor ,são utilizadas nos exercícios vigorosos que requerem a liberação de energia rápida ( anaeróbicos ). Neste caso o glicogênio acumulado e a glicose sanguínea terão que fornecer maior parte de energia para a ressíntese de ATP. Em exercícios leves e moderados , os carboidratos atendem cerca de metade das necessidades energéticas do organismo. E são também necessários alguns carboidratos para que se processe nutrientes das gorduras e então sejam transformados em energia para os exercícios de longa duração ( aeróbicos ) .

Gordura: A gordura armazenada representa a fonte mais abundante de energia potencial. Essa fonte comparada aos outros nutrientes é quase ilimitada. Existe alguma gordura armazenada em todas as células , porém , seu maior fornecedor são os adipócitos - células gordurosas especializadas para a síntese e armazenamento de triglicerídeos - elas compreendem cerca de 90% das células . Depois que os ácidos graxos se difundem para dentro da circulação, eles são entregues aos tecidos ativos onde são removidos do tecido adiposo e assim são transferidos para os músculos ( particularmente as fibras de contração lenta ) onde a gordura é desintegrada e transformada em energia, dentro das mitocôndrias ,para poderem ser utilizadas como combustível. Dependendo do estado de nutrição, treinamento do indivíduo e duração da atividade física, de 30% `a 80% da energia para o trabalho biológico derivam das moléculas adiposas intra e extracelulares (McARDLE et alii , 1988 ) .

O QUE É UTILIZADO PRIMEIRO, A GORDURA OU O CARBOIDRATO?

Segundo AFAA (1992) , Esse tem sido um assunto de grande preocupação entre os estudiosos. Sob condições de repouso, os ácidos graxos livres estão disponíveis e proporcionam a primeira fonte de combustível, ou seja , o metabolismo de gordura se acelera enquanto o de carboidrato é inibido. Durante exercícios de intensidade moderada (com mais de 85 % da Frequência Cardíaca Máxima), súbitas mudanças são observadas no nível de excreção de certos hormônios. A excreção de adrenalina , por exemplo, se eleva ao mesmo tempo que é reduzido a excreção da insulina no organismo. Esses hormônios influenciam diretamente na taxa de utilização de gordura e carboidrato pelos músculos , de tal maneira que o metabolismo dessa gordura tenha predominância e tenda a se elevar com o trabalho prolongado. Ao se elevar a intensidade do exercício ( mais que 85% da F.C.M.) , ocorrem mudanças estimulam a inibição da utilização da gordura pelo organismo. O maior inibidor da gordura chama-se Ácido lático. Como resultado, o metabolismo da gordura é reduzido e o carboidrato se torna a fonte mais solicitada de energia sendo utilizada pelos sistemas ácido lático e aeróbico.

Proteínas: A proteína pode desempenhar um papel importante como substrato energético durante o exercício constante e treinamento pesado. Mas não é capaz de proporcionar mais que 10% à 15% da energia exigida na atividade , como o carboidrato e gordura . Para proporcionar energia, as proteínas são primeiro transformadas em aminoácidos de forma que possam penetrar prontamente nas vias para a liberação de energia através da remoção de nitrogênio dos ácidos graxos e assim serem transferidos para outros compostos. Dessa maneira, certos aminoácidos podem ser usados diretamente no músculo para obtenção de energia ( McARDLE et alii , 1992) .
1 MOL de carboidrato é capaz de produzir : 38 ATP1 MOL de gordura é capaz de produzir : 142 ATP1 MOL de proteína é capaz de produzir : 15 ATP

INTERRELAÇÃO ENTRE CARBOIDRATO, PROTEÍNA E GORDURA(Ficar sem comer é bom?)
Os carboidratos que não são utilizados - estão em excesso- fornecem fragmentos de glicerol e acetil para produção de gordura neutra. Um aspecto interessante é que a desintegração de ácidos graxos parece depender em parte de um certo nível prévio e contínuo de catabolismo de glicose.
Quando os níveis de carboidrato caem, é observado que os níveis de utilização da gordura também caem . É igualmente provável que haja um limite de velocidade para a utilização dos ácidos graxos pelo músculo ativo. Embora esse limite possa ser exacerbado pelo treinamento aeróbico e potência gerada pela desintegração das gorduras ,nunca parece ser igual àquela gerada pela combinação da desintegração tanto das gorduras quanto dos carboidratos.
Sendo assim quando o glicogênio muscular cai, a potência do músculo também cai. Reduzindo-se os carboidratos, como nos exercícios de longa duração (ex: a maratona), dietas de inanição ou dietas com eliminação de carboidratos e ricas em gorduras , ocorre como consequência uma limitação na capacidade de transferência de energia. Em casos de restrição extrema (dieta de inanição), os fragmentos de acetato produzidos na oxidação beta, começam a se acumular nos líquidos extracelulares por não serem utilizados pelo ciclo de Krebs. Eles são convertidos em corpos cetônicos , sendo parte deles excretados pela urina. Se a cetose persistir, a acidez corporal pode aumentar até níveis potencialmente tóxicos ( ex: mau hálito e acidez estomacal ) (WILLIAMS, 1995).

Nenhum comentário: